Loading Calculator...
Please wait a moment
Please wait a moment
Calculate the sine of any angle in degrees or radians. Sine represents the y-coordinate on the unit circle.
| Degrees | Radians | Exact Value | Decimal |
|---|---|---|---|
| 0° | 0 | 0 | 0.0000 |
| 30° | π/6 | 1/2 | 0.5000 |
| 45° | π/4 | √2/2 | 0.7071 |
| 60° | π/3 | √3/2 | 0.8660 |
| 90° | π/2 | 1 | 1.0000 |
| 120° | 2π/3 | √3/2 | 0.8660 |
| 135° | 3π/4 | √2/2 | 0.7071 |
| 150° | 5π/6 | 1/2 | 0.5000 |
| 180° | π | 0 | 0.0000 |
| 270° | 3π/2 | -1 | -1.0000 |
| 360° | 2π | 0 | -0.0000 |
Domain: All real numbers (-∞, ∞)
Range: [-1, 1]
Period: 2π radians (360°)
sin(θ + 2π) = sin(θ)
Odd function: sin(-θ) = -sin(θ)
Origin symmetry
Zeros: 0°, 180°, 360°, ...
Max: 90°, Min: 270°
Sine is a trigonometric function that returns the y-coordinate of a point on the unit circle. In a right triangle, sin(θ) = opposite/hypotenuse.
Because sin(-θ) = -sin(θ). Negating the angle reflects the point across the x-axis, which negates the y-coordinate.
Sine is positive in Quadrants I and II (0° to 180°), and negative in Quadrants III and IV (180° to 360°).